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1.0 Introduction

The ability to accurately predict the thermomechanical deformation response of
advanced composite materials continues to play an important role in the develop-
ment of these strategic materials. Analytical models that predict the effective
behavior of composites are used not only by engineers performing structural anal-

ysis of large-scale composite components but also by material scientists in devel-
oping new material systems. For an analytical model to fulfill these two distinct
functions it must be based on a micromechanics approach which utilizes physi-

cally based deformation and life constitutive models and allows one to generate
the average (macro) response of a composite material given the properties of the
individual constituents and their geometric arrangement. Only then can such a
model be used by a material scientist to investigate the effect of different deforma-
tion mechanisms on the overall response of the composite in order to identify the
appropriate constituents for a given application. However, if a micromechanical
model is to be used in a large-scale structural analysis it must be 1) computation-
ally efficient, 2) able to generate accurate displacement and stress fields at both
the macro and the micro level and 3) be compatible with the finite element
method. Additionally, new advancements in processing and fabrication techniques
now make it possible to engineer the architectures of these advanced composite
systems. Full utilization of these emerging manufacturing capablities require the
development of a computationally efficient micromechanics analysis tool capable
of accurately predicting the effect of microstructural details on the internal and
macroscopic behavior of composites. The above mentioned computational effi-
ciency is required since 1) the large number of parameters that must be varied in
the course of engineering (or designing) composite materials, and 2) the optimiza-
tion of a material's microstructure will require the integration of the micromechan-

ics model with optimization algorithms. From this perspective, analytical
approaches that produce closed form expressions which describe the effect of a
material's internal architecture on the overall material behavior are preferable to
numerical methods such as the finite element or finite difference schemes.

A number of models presently exist that can fulfill some aspect of the aforemen-
tioned tasks. However, there are very few working models that are both computa-
tionally efficient and sufficiently accurate at the micro- as well as the macro-level.
One such micromechanics model with the potential of fulfilling bothtasks is the
method of cells [1] and its generalization [2]. The comprehensive capabilities and
efficiency of this method has been documented in references [4] and [5]. Conse-
quently, the recently developed, computationally efficient and comprehensive
micromechanics analysis code, MAC, who's predictive capability rests entirely
upon the fully analytical micromechanics model, herein referred to as the general-
ized method of cells, GMC, [2 and 3] will now be described. MAC is a versatile
form of research software that "drives" the double or triply periodic micromechan-
ics constitutive models based upon GMC. GMC is capable of predicting the

response of both continuous and discontinuous multi-phased composites with an
arbitrary internal microstructure and reinforcement shape. GMC is a continuum
based micromechanics model that provides closed-form expressions for the mac-
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roscopic composite response in terms of the properties, size, shape, distribution,

and response of the individual constituents or phases that make up the material.
GMC also utilizes physically based viscoplastic deformation and life models for
each constituent. Furthermore, expressions relating the internal stress and strain
fields in the individual constituents in terms of the macroscopically applied
stresses and strains are also available through strain or stress concentration fac-
tors. These expressions make possible the investigation of failure processes at
the microscopic level at each step of an applied load history. Similarily, GMC pro-
vides the capability of studying the influence of bond strength at the fiber/matrix
interface which recently has been shown to be an important damage mechanism.

MAC enhances the basic capabilites of GMC by providing a modular framework
wherein 1) various thermal, mechanical (stress or strain control) and thermome-
chanical load histories can be imposed, 2) different integration algorithms may be
selected, 3) a variety of constituent constitutive models may be utilized and/or
implemented and 4) a variety of fiber architectures may be easily accessed
through their corresponding representative volume elements. Figure 1 illustrates
the basic flow diagram for this modular framework. The capabilities for this version
of MAC are discussed in section 2, whereas theoretical and background informa-
tion on the basic capabilities itemized above is given in section 3. Section 4
describes how one might use MAC and will be the most referred to section in the
entire manual. Finally, section 5 gives some insights into the future modifications
planned for MAC.
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2.0 Current Capabilities

In this section the current features/capabilities of MAC are itemized.

• Load Types:

- Thermal

- Mechanical

- cyclic (stress or strain control)

- creep (stress control)

- relaxation (strain control)

- Thermomechanical

• Aboudi GMC Models:

- Double Periodicity Model for continuous reinforcement

- Triple Periodicity Model for discontinuous reinforcement

• Run Options:

- Interactive

- Batch

• Graphical Output

- Up to 5 x-y data plot files may be generated for both macro and micro (sub-
cell) quantities

- PATRAN for subcell geometry and color results evaluation, e.g. stress,
strains, inelastic strains, J2, etc.

• Integration Options:

- Forward Euler

- Predictor/Corrector

• Constitutive Models

- elastic orthotropic

- inelastic viscoplastic models:

- Bodner-Partom

- Robinson

- GVIPS

5
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3.0 Background

3.1 Micromechanics Models

As stated in the introduction, MACs predictive capabilities rest entirely upon the
fully analytical micromechanics model known as GMC which is capable of predict-
ing the inelastic response of both continuous (double periodicity) and discontinu-
ous (triple periodicity) multi-phased composites with an arbitrary internal
microstructure and reinforcement shape. Prior to describing the available archi-
tectures (Representative Volume Elements, RVE's) within MAC as discussed in
section 4, a brief overview of the theoretical foundation behind the generalized
method of cells follows. A more complete discussion of the theoretical formulation
is given in [1] - [3].

In the original formulation of the method of cells, a continuously (or discontinu-
ously) reinforced, unidirectional fibrous composite is modeled as a rectangular,
double-periodic (or triply-periodic) array of fibers embedded in a matrix phase.
The periodic character of the assemblage allows one to identify a repeating unit
cell that can be used as a building block to construct the entire composite. The
properties of the repeating cell are thus representative of the properties of the
entire assemblage. The unit cell consists of a single fiber subceli surrounded by
three matrix subcells for continuous and seven for discontinuous composites,
hence the name method of cells. The rectangular geometry of the repeating unit
cell allows one to obtain an approximate solution for the stresses and strains in
the individual subcells given some macroscopically homogeneous state of strain
or stress applied to the composite. The approximate solution to the posed bound-
ary value problem is, in turn, used to determine macroscopic (average) or effec-
tive properties of the composite and the effective stress-strain response in the
inelastic region.

In the generalized method of cells for continuous (or discontinuous) fibrous
composites, the repeating unit cell can consist of an arbitrary number of phases.
Hence the generalized method of cells is capable of modeling a multiphase com-
posite. This generalization extends the modeling capability of the original method
of cells to include the following: 1) inelastic thermomechanical response of mul-
tiphased metal matrix composite, 2) modeling of various fiber architectures
(including both shape and packing arrangements), 3) modeling of porosities and
damage, and 4) the modeling of interracial regions around inclusions including
interracial degradation.

The basic homogenization approach taken in the micromechanical analysis
consists essentially of four steps. First, the repeating volume element, RVE, of the
periodic composite is identified. Second, the macroscopic or average stress and
strain state in terms of the individual microscopic (subcell) stress and strain states
is defined. Third, the continuity of tractions and displacements are imposed at the

boundaries between the constituents. These three steps, in conjunction with
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micro-equilibrium, establish the relationship between micro (subcell) total, thermal

and inelastic strains and macro (composite) strains via the relevant concentration

tensors. In the fourth and final step, the overall macro constitutive equations of the

composite are determined. These four steps form the basis of the micro-to-macro-

mechanics analysis which describe the behavior of heterogeneous media. The

resulting micromechanical analysis establishes the overall (macro) behavior of the

multi-phase composite and is expressed as a constitutive relation between the

average stress, strain, thermal, and inelastic strains, in conjunction with the effec-
tive elastic stiffness tensor.

That is,

= _8" (EQ l)

where for the most general case of discontinuous reinforcement with N_ by NI3 by
N, t .number of subcells, the effective elastic stiffness tensor, B _, of the composite
is given by,

Na Np N.t

B* 1
~ - d-hl Z Z Z d_xh_lv-C(_XP't)-A (a_v) (EQ2)

(z= 113= IT= 1

the composite inelastic strain tensor is defined as,

_B O- 1 Na Np N,t (o-_T) I _l(o,[$T))
_-1- _ Z Y. Z d_thplv-COXP't) (D _ -

Ct= 113= 1y= 1

(EQ 3)

the average thermal strain tensor as,

_T _ _ Z dahf_lT-C(af_T) (-D(Ctlbt)-EsT--_T(cq3T))
Qt= 113= 1T= 1

(EQ 4)

and _ is the uniform applied macro (composite) strain. For the case of continuous

reinforcements with Np by N_, number of subcells, eq. (2) - (4) reduce to the fol-
Iowing:

Np N_t

B*=_ 1 ___l 17--_1 hl3/T-C (13T) -A (13T)
(EQ 5)

NI_ N T

hl _ Z h_l'r-C(_7) (D(I_7)"I gl(_T)) 0EQ6)- - _s--~

13= 1T= 1

_T _ _o*-D

l

" hi

N I_ N. t

_ hpl_t_C(P_')(D(13T)gT-- _ T(I_T))

I_= lT=l

(EQ 7)
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In the above equations matrix notation is employed; where, for example, the
average stress, _, average applied strain, E, and inelastic subcell strain, -_/s,vec-
tors represent,

-_ -- {_II' G22' G33' _12' G23' GI3 } (EQ8)

-_ = {_:11' _'22' _'33' _'12' _'2.3' _13 } (F_,Q 9)

9_ = {_I(111), ...,_I(N=N,NQ} (EQI0)

where the six components of the vector _/(al3x)are arranged as in eq. (9). Similar

definitions for _E_,_T(ap_,) also exist. Note that the key ingredient in the construc-
tion of this macro constitutive law is the derivation of the appropriate concentration

matrices, A (alh,) and D (a13_,)having the dimensions 6 by 6 and 6 by NaNpN x
respectively, at the micro (subcell) level. The definitions of A and D, although not
given here, may be found in references [2] and [5]. Finally, the matrix C _ap_'_rep-

resents the elastic stiffness tensor of each subcell (a_7) and da, hi3, l_,the
respective subcell dimensions (see Fig. 2) wherein,

N a Np N.f

d= Xda h= Xh_ l= Xl7
a=l 8=1 T=I

Similarly, given the concentration matrices _A(a13_,)and _D(al3"r),expressions for

the average strain in each subcell can be constructed, i. e.,

as well as average stress,

The analytic constitutive law, see eq. 1, may be readily applied to investigate
the behavior of various types of composites, given knowledge of the behavior of
the individual phases. Numerous advantages can be stated regarding the current
macro/micro constitutive laws as compared to the other numerical micromechani-
cal approaches in the literature, e.g. the finite element unit cell approach. One
advantage is that any type of simple or combined loading (multiaxial state of
stress) can be applied irrespective of whether symmetry exists or not, as well as

without resorting to different boundary condition application strategies as in the
case of the finite element unit cell procedure. Another, advantage concerns the

8
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availability of an analytical expression representing the macro elastic-thermo-
inelastic constitutive law thus ensuring a reduction in memory requirements when
implementing this formulation into a structural finite element analysis code. Fur-
thermore, this formulation has been shown to predict accurate macro behavior

given only a few subcells, within the repeating cell (see references [2], and [4]).
Whereas, if one employs the finite element unit cell procedure, a significant num-
ber of finite elements are required within a given repeating unit cell to obtain the
same level of accuracy as with the present formulation. Consequently, it is possi-
ble to utilize this formulation to efficiently analyze metal matrix composite struc-
tures subjected to complex thermomechanical load histories. This is particularly
important when analyzing realistic structural components, since different loading
conditions exist throughout the structure, thus necessitating the application of the
macromechanical equations repeatedly at these locations.

3.2 Integration Algorithms

There are two integration algorithms currently available within MAC. The first is
the standard, explicit Forward Euler algorithm, which can be expressed as,

Wi+ 1 -- wi+A(f(ti, W i)

where

W i = y (ti)

Wi+ 1 = Y. (ti+ 1)

and f(t i, wi) is the rate of change with respect to time of the vector, _y(ti), i.e.

dy (ti)

f(ti' wi) = Y- = " d----i--

The second is a predictor/corrector algorithm which uses:

1) a 4th order Runge-Kutta starter:

W i = Wi_l-I-
(K 1 + 2K 2 + 2K 3 + K 4)

where

10
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K1 = Atf (ti- 1, wi- 1)

At K1

K2 = Atf(ti- 1 + -_, wi- 1 + --_)

At K 2

K3 = Atf(ti- 1 + -_, wi- 1 + --f )

K4 = Atf(ti- 1 + At, w i_ 1 + g3)

2) with an Adams Bashforth four-step predictor:

W0 = (:11 Wl = (3£2 W2 = _3 W3 = _4

At

wPi+ 1 = wi + -_ [55f(ti' wi) --59f(ti- 1' wi- 1) + 37f(ti- 2' Wi- 2)

--9f(ti_ 3, wi_ 3) ]

and 3) an Adams Moulton four step corrector:

At

wC+ 1 = wi+ _-_ [9f(ti+ 1' w_/+ 1) + 19f(ti' wi) - 5y(ti-1' wi- 1)

+f(ti_ 2, wi-2) ]

where the o_'s come from the 4th order Runge-Kutta starter. Further details may

be found in [6].

It has been found, based on experience, that for relatively rapid monotonic or

cyclic Ioadings it may be more efficient to use the Forward Euler integrator since

the predictor/corrector requires 5 evaluations per step, as shown above. However,

in the case of creep, relaxation or slow monotonic or cyclic loading histories, sig-

nificant increases in solution speeds can be obtained using the predictor/corrector
algorithm with a self-adaptive time step.

11
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Finally, within MACthe vector y as used above contains the following macro
quantities:

oosition contents

1-6
7-12
13-18
19 - 30

31 - 36
37

Macro Total Strain
Macro Stress
Macro Inelastic Strain

(currently empty

space for 2 6xl vectors)
Macro Thermal Strain

Current Temperature

and the quantities associated with each subcell are stored sequentially in _y,such
that

position contents

38 - 43
44 - 49
50 - 55
56 - 67

68 - 73

Micro Total Strain
Micro Stress
Micro Inelastic Strain
Micro Internal State Variables

(space for 2 6xl vectors)
Micro Thermal Strain

The above 36 positions are repeated for the total number of (N) subcells thus

bringing the total length of the __yvector to 37+36N. It follows that a second vector
of similar length contains the corresponding macro and micro rates .y.

3.3 Available Constituent Constitutive Models

Currently MAC provides four inelastic constitutive models. These models have
been selected purely based upon the availability of material parameters for the
materials of interest. However, MAC is designed in a modular fashion thus allow-

ing the implementation of additional inelastic models. Two of the four available
models are capable of representing transversely isotropic material behavior, thus
allowing one to investigate the reinforcement of an anisotropic matrix or the ideal-
ization of an anisotropic fiber. In all cases a purely elastic response is possible by
modifying a single material parameter for each model as noted below.

t2
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3.3.1 Bodner-Partom Model

Reference: Mechanics of Composite Materials, Jacob Aboudi, Elsevier, 1991

This model represents the Bodner-Partom viscoplastic model with isotropic

hardening, Z, and can be used for an initially isotropic metallic material.

The flow law is given as:

where

_Iij = Asij

A= D_2eL

_,J2) I
1

A2 1 2 (n+l)n

]

J2 = 2SijSij

1
Sly = _ij- "3(_kk_ij

The evolution law for isotropic hardening is given as:

2 = ,n(z1- z4p Zo

where Z o, Z 1 and m are inelastic constants and the plastic work rate, if.eL, is

given by;

=oq /j

t 3 t

Zeff= Zo + q_2 ('cl d'¢ + (l-q) X rij_Z" ('cl rij ('c) d'c
0 i,j=l 0

rij (t) = cij (t) / [Okl (t) Okl (t) ] 1/2

An elastic only response may be obtained by setting the material parameter D o to
zero.

13
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3.3.2 Robinson Creep Model

Reference: NASA TM 103172, 1990

This model represents a transversly isotropic material, wherein the vector of

direction cosines, d i defines the strong material direction along which no inelastic-

ity occurs.

Flow Law:

Evolution Law:

E__ F..
_ 2F n _.l

_o OoJ-F

• H I_I RG m-_ I'lq

aq = G_ 2 go Oo 4c'_

where

1
Fij= Zij - -_I (3D/j- a/./)

I-
n u = aq- (3D/j- 6q)

in which

F=4(_ 32
02 (_ = J2--_I

4 3-2
G = _-_W _F=.I2-_I

Go

and

J2 = 1Y-'ijY"ji I = Dq_ i Dij = did j Z. = Sij-aij2

1 1

_[2 = _aqaji I = Dijaji Sq = 0 0 - ._Okk_ij

Special cases involving an isotropic material can be obtained by defining

d i = (1/3, 1/3, 1/3) and/or elastic only response by setting Go to an extremely
large number•

14
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3.3.3 Robinson Viscoplastic Model

Reference: NASA TM 105819, 1992

This model represents a transversly isotropic material wherein the vector of

direction cosines d i defines the perferred material direction. In this model the
strength of anisotropy is specified by the parameters co and _; where co is the

ratio of the normal longitudinal and transverse yield stress and rl is the ratio of

longitudinal and transverse shear strengths.

Flow Law:

Evolution Law

•
a 6 = G_%1 u '1

where

and

1 _i ° (3Di j _ 80 )I"ij = _'ij -- _ (Dki_jk + Djk_'ki -- 2IoDij) - _

1 ^
T'Iij = ai] - _ (D l¢ia# + D#aki - 21oD ij) - _ _Io ( 3D ij - _)ij)

1[ 1, 9 ]F= _T 11+ + 13 --1112 2 4(4(o z-l)

0 = --_ 2]2 4(4(o 2-1)

G = (O-Oo)Hv[Sijxij] +0 0

1

11 = J2 - I- _I 3 12 = I- 13 13 = 12

2 I = Dq_ji

_ 112-1
rl 2

D O = did j

4 (03 2- l)

_- 4co2_ 1

Z.O = Sq-aq

15
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The invariants 71, 72, 73 are the same as those given above but with T_,.replaced

by aij. Special cases involving an isotropic material and/or elastic only"response
can be obtained by defining co = T! = 1 and/or by setting K:7,to an extremely large
number.

16
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3.3.4 Generalized Viscoplastic Potential Structure (GVIPS) Model

Reference: NASA TM 106609, 1994

This model is a fully associative, multiaxial, isothermal, nonlinear kinematic

hardening viscoplastic model for use with initially isotropic metallic materials. A

unique aspect of this model is the inclusion of non-linear hardening through the

use of a compliance operator Qqkz in the evolution law for the back stress. This
non-linear tensorial operator is s_gnificant in that it allows both the flow and evo-

lutiionary laws to be fully associative (and therfore easily integrated) and greatly
influences the multiaxial response under non-proportional loading paths.

Flow Law:

3, .i, Zq

d,_= EIIE_jII_ if F>O

where

2 .j -Iile_I = _,;,:;._ _r'

Internal constitutive rate equation

aq = Lq,.¢4,.s

Evolution Law:

./ 3 ! -I IIars Hv
Ars = e-rs _ _ijIl'-_ [El

3RaBoGq

_2 ars if aqZ q >_0

A,.=Qr.,.E,_.,,,E.,.-_ lEVI Hvt_ 3RaB°Gq )r"2 anp if aqZq < 0

where

Y= (1 - [34t'G)

Iz
G=_

K 2

17
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K2 (lij 3B1 (P- 1) GP-2 ]Lijrs = [Qijrs ]-1 = 3Bo ( I + BlPGP_ I) rs- arsaiyIc2(1 +B]pC_rP-] (6p-5))

and

3
12 = _aijaij Y-'ij= Sly- aij

1
Sij = trij - §trkkSiy

The special case of an elastic only response maybe obtained by setting r to an
extremely large value.

18
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4.0 Running MAC

MAC provides the user with the option of either running the code in a interactive
or batch mode. In the interactive mode, the user is prompted for all necessary

input through a series of questions. This mode is most useful for beginners or
when solution of a single problem is desired. Execution in the batch or back-
ground mode requires the user to construct an input file containing the required
input as discussed below. This mode is extremely helpful when performing para-
metric studies in which only a single parameter is being varied. Since the input
requirements for both modes are identical and the interactive input is self explain-
atory, only the batch mode input requirements will be presented in detail. First,
however, a description of the various files required and generated by MAC will be
given followed by the actual commands required to commence execution of MAC.

4.1 MAC Input and Output Files

Output
batch.out

PATRAN files (optional, see section 4.3.11 )
plot data files (see section 4.3.19)

4.2 Interactive/Batch Mode Execution

Prior to executing MACthe mac.key file must exist. The following is an example
of the minimum size (3 lines) mac.key file required to run MAC in the interactive
mode.

Required input:

first line:
second line:
third line:

-_problem title
_JRUN interactive=l batch=2
1

See Appendix A for a sample mac.key file for running in the batch mode. Each
control block necessary for running in batch mode is described sequentially in the
next section.

MAC has been developed for a Sun IPX workstation running Sun OS 4.1.3.
Upon linking the associated object modules that comprise MAC, execution is

begun by simply typing MAC (in upper case) and hitting return.
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4.3 Input Requirements: Batch Mode

The following data should appear in the file: mac.key. This mac.key file is the
job control data file that is read when the batch mode option is used. Since this file

is read sequentially, the data must appear in the order given here. Also, note that

the key file must exist and the first two command blocks must always be included
in this key file, i.e. the Header Line and Run Mode blocks as it will define the exe-

cution option for MAC.

Note in the following, each block of input data will have its own subsection and
will typically contain the following information:

1) statement of purpose

2) declaration of input block

3) example

4) notes

_" Note: Each data block contains the line:

comments

This line is required but the actual text, including the -_, are currently not
used by the code. The present purpose of this line is to make the mac.key file

easier to organize and read.
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4.3.1 Header Line:

Purpose: Define the title of this particular job (80A format).

_" Note: the Header Line is limited to one line:

problem title

Example:

4.3.2 Run Mode:

Purpose: To select either the interactive or batch mode of MAC.

run mode comment

jrun

jrun:
1 - Interactive mode
2 - Batch mode

Example: (to select batch mode)
-_JRUN interactive=l batch=2
2

-,t-Transverse tensile response of 35% SCS6/Ti--6-4

4.3.30UtDut Print Level:

Purpose: To control the output generated

output comment
nplvl

nplvl:
-1 - print out macro stiffness matrix, engineering constants and macro ther-

mal expansion coefficients
0 = minimal output (most commonly used)
3 ---basic program trace

5 = program execution trace and all array data
WARNING: this generates a very large output file

Note: When using the batch mode, all output is written to the file, batch.out. For
the interactive mode, all output is written to the screen.

Example: (minimal print out)
-_NPLVL

0
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4.3.4 Load Type:
Purpose: To select load type

.S load type comment
nsel

nsel:
1 = Thermal Load

2 = Mechanical Load
3 -- Thermomechanical Load

Example: (run mechanical load)
.SNSEL
2

,z- Note: This is where the data would begin if the new problem option is chosen in
section 4.3.20

4._.5 Load Component:

,z- Note: This data block is NOT TO BE USED if NSEL = 1 (thermal load)

Purpose: To select the load component (refer to figure 3 for coordinate system to be
activated)

.S load component comment
lop

lop:
1 = axial load in 1-direction
2 = axial load in 2-direction
3 = axial load in 3-direction
4 = shear load 12-direction
5 = shear load 23-direction
6 = shear load 13-direction

Example: (axial load in 1-direction)
-SLOP
1

23



MAC. M icromechanics A nalysis C ode

2

:T::::-:

........iiiiiiiiiiii_i iilii_

:.:.:.:.:.:.:.:

........ !ili
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.............. iiiifi

Double Periodicity

v
3

3

Triple Periodicity

Figure 3: Coordinate Systems
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4.3.6 Load Control"

,_ Note: This block is only required if NSEL = 2 or 3

Purpose: Select type of load control for mechanical load

-_ load control comment

iopt2

iopt2:
1 - Strain control
2 = Stress control

Example: (strain control)
-_IOPT2
1
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For Thermal Load (NSEL = 1):
number of time and temperature points comment

nptt
time points comment

tl, t2, ..., tnptt
temperature points comment

T1, T2, ..., Tnptt

For Mechanical Load (NSEL - 2):
number of time and load points comment

nptw
time points comment

tl, t2, ..., tnptw
load points comment

L1, L2, ..., Lnptw

For Thermomechanical Load (NSEL = 3):
number of time and load points comment

nptw
time points comment

tl, t2,...,tnp 
load points comment

L1, L2, .... Lnptw
number of time and temperature points comment

nptt
time points comment

tl, t2, ..., tnptt
temperature points comment

T1, T2, ..., Tnptt

npt, nptw, nptt:

t1, t_ ...:

L1, L2,...:

T1, 7"2, ...

number of points on load and/or temperature curve(s)
time values

load curve values

temperature curve values

,_" Note: For the Thermomechanical Load t,,ptw - t,,p,, and both curves must have t 1 - 0.
But the number and time value of the data points in-between maybe different, see fig-
ure 4.
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Examples:

For thermal load only analysis (NSEL = 1), using 4 time and temperature points:

-_ NPT

4

-_TIME

0., 1., 2., 3.

-_ TEMPERATURE

0.,100.,200.,300.

For mechanical load only analysis (NSEL = 2), using 4 time and load points:
-_ NPT

4

-_ TIME

0.,1.,2.,3.
-_ LOAD

0.,10.,20.,30.

For thermomechanical load analysis (NSEL = 3), using 4 points for both load and

temperature data:
NPTW

4

TIME

0.,1 .,2.,3.

LOAD

0.,10.,20.,30.
_NPI-F

4

_TIME

0.,1 .,2.,3.
•,,It-TEMPE RATU RE

0.,100.,200.,300.

,_ Note: Units must be consistent with selected material model parameter units (4.3.14)

See figure 4 for sketch of load history.
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T1

L Temperature

T2

I
tl t2

T4

/
T3

I I
t3 t4

T5

I v
t5 Time

L1

Stress or Strain

tl

L3 L4

L I ,
t2 t3 t4 t5

Note _ow
end t, mes are
equal

I L6
m.._

I
t6 Time

Figure 4: Load History Specification
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4.3.8 Reference Temperature"

Purpose: Define initial (starting) temperature

-_ reference temperature comment
tref

tref:

--- temperature

Example: (set reference temperature at 70.)
-_TREF
70.

Note: only important in thermal or thermomechanical load case when using secant
values of coefficient of thermal expansion.

=_ Note: Units must be consistent with selected material model parameter units
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4.3.9 Mi¢r0mechanics Model Identification:

Purpose: Select desired GMC micromechanics model

micromechanics mode/comment
modid

modid:

1 = double periodicity (continuous reinforcement)
2 = triple periodicity (discontinuous reinforcement)

Example: (select double periodicity model)
-_MODID
1

,_ Note: This is where the data would begin if a new case option is chosen in sec-
tion 4.3.20
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4.3.10 PATRAN OUt Dut:

Purpose: To select PATRAN output file generation.

PATRAN comment

patran
prefix

patran:
y - yes, generate PATRAN files
n = no, do not generate PATRAN files

prefix:.
this will be the filename prefix that will be assigned to all PATRAN files.
,_ Note: This is only required if patran is yes

Example 1: (select PATRAN output, use file prefix "run1")
-_PATRAN

Y
run1

Example 2: (do not select PATRAN output)
-_ PATRAN
n

,_ Note: If this option is chosen, MAC generates the following PATRAN files:

1) prefix.patgeo: contains "geometry" information of the RVE.
(this file is written in PATRAN 2.5 neutral file format in which the subcells are
treated as "elements")

2) prefix.patstr: contains stress quantities
(file is formatted as a PATRAN 2.5 element results file)

3) prefix.patepsin: contains inelastic strain quantities

4) prefix.patepsto: contains total strain quantities

For Example 1, the following files would be produced:

runl.patgeo
runl.patstr
runl.patepsin
runl.patepsto
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4.3.11 Inteqrator Identification

Purpose: Select type of integration scheme

integrator comment
nff

initial time step comment
istp

error tolerance comment
errtol

ntf:
1 = Forward Euler method
2 = Predictor/Corrector method

istp:
= initial time step

errtol:

= error tolerance for predictor/corrector
,=" Note: errtol is _ required when using predictor/corrector (ntf = 2)

Suggested errtol = 0.1

Example 1: (select predictor/corrector, with initial time step = 0.001
ance = 0.01)

-,I¢-NTF
2

ISTP
0.001

ERRTOL
0.01

Example 2: (select forward euler, time step = 0.001 )
-_ NTF
1

ISTP
0.001

and error toler-
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4.3.12 Constituent Material Model Identification:

Purpose: To select the model for the fiber and matrix constituents

material model comment
ncmd

ncmd:
1 = Bodner-Partom Model

2 = Robinson Creep Model
3 = Robinson Non-normalized Viscoplastic Model

4 = Generalized Viscoplastic Potential Structure (GVlPS) Model

Example: (select Robinson Non-normalized Viscoplastic Model)
_NCMD

3

,_ Note: Currently all phases, e.g. both the fiber and matrix, constituents, must use the
same material model.

,_ Note: See Section 3.3 for a mathematical description of each material model.
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4.3.13 Number of different Materials:

Purpose: Define the total number of different materials

,="Note: see below for the proper material constants required.

number of materials comment
nmat

matedal #1 comment
mdata

database option comment
idb

material #nmat comment
mdata

database option comment
idb

repeat each block nmat
times

nmat- number of materials
mclata- material identification letter selected from material database below

MAC Isothermal Materials Database

Model (4.3.13)

Bodner-Partom
ncmd = 1

Material Units

Robinson Creep
ncmd = 2

Robinson Viscoplastic
ncmd = 3

GVlPS
ncmd = 4

Boron MPa, sec

Aluminum ""

SCS-6 ""

Ti-15-3 ""

"13-6-4 ""

Tungsten ksi, hr

Kanthal ""

Tungsten ksi, hr

Kanthal ""

FeCrAIY ""

Weak interface ""

TIMETAL21S ksi, sec

SCS-6

Weak interface ""

mdata

A

B

C

D

E

A

B

A

B

C

D

A

B

C
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idb - read material constants from the database (y) or read from mac.key

file (n)

,_ Note: if idb is n (no) then the following four lines must also appear:

dummy keyword
elastic constants

dummy keyword

viscoplastic constants

Example: (select 2 materials, material 1: Boron, read from database, material 2: Alu-

minum, enter properites)

_NMAT

2

_MAT1
A

_IDB

Y
_MAT2

B

_IDB

n
-$ELASTIC

E, v, G, (z (see below for actual constants required)
_INELASTIC

a, b ,c ,d .... (see below for actual parameters required)

Required Format for Isothermal Material Constants:

Bodner-Partom: ncmd = 1

Elastic:
E, v

Robinson Creep: ncmd = 2
Elastic:
El, E2, v 1, v 2, G12, o_1, o_2

Inelastic:

DO, ZO, Z1, m, n,q

Inelastic:

°o, _:o,n, 13,m, R, H

Robinson Viscoplastic: ncmd = 3
Elastic:

El, E2, v I , v 2, G12, o_l , (z2

GVlPS: ncmd= 4

Elastic:
E,v

Inelastic:

n,m, _, wT, 13, R, H, (_o, TI, co

Inelastic:

: Ix, _c, R(_, R_:, B o, B], L o, L], m, n, p, q, w, z 0
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Non-isothermal Material Constants

The Following materials are available for a non-isothermal analysis:

MAC Nonisothemal Materials Database

Model (4.3.13) Material Units

Bodner-Partom Graphite

ncmd = 1 Aluminum

User Defined ""

MPa, sec,o C
u

mdata

A

B

C

Required Format for Non-Isothermal Material Constants:

ntpts

T1, T2 ..... Tntpts

ET 1, ET 2, ...ET,,p,,

VT1,VT2, --- VT.,m

GT_, GT2,-.. GT.,,,

%, %=, ...o_._,,

DOT' Dot2' ...Dot,,,,

ZOrl, ZOT ' .... Z%,,,,

ZIT ' Zlr2' ...Zl_nu

m E, mT2,.., inT,,p,,

rtT1,/liT2, ... nT,u_,"

qT 1, qT 2, ...qT., m

Note: Currently, only the Bodner-Partom Model has nonisothermal constants.
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4.3.14 RVE Identification:

Purpose: Select RVE representing desired fiber packing arrangement/architecture

-_ RVE comment

idp

idp:

.1=

.2=

-3=

-4=

.6=

Square Fiber, Square Pack (original 4-cell model)

Vf<_I/(I+A) 2

RVE shown in Fig. 5

Square Fiber, Triangular (hexagonal) Pack

V/_< 0.86602/(1 +A) 2

RVE shown in Fig. 5

Square Fiber, Square Diagonal Pack

Vf<O.5/ (I +A) 2

RVE shown in Fig. 5

Cross Shaped Fiber, Square Pack

vI_ 1- 4 (xa)2

RVE shown in Fig. 5

Circular Fiber Approximation Rectangular or Square Pack

0.8125

Vf<R(I+A) 2 if

R (0.8125)

Vf_< (l +A) 2 if

RVE shown in Fig. 5

R> 1.0

R< 1.0
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-9=

• 11=

• 99=

Two Different Size Square Fibers, Rectangular or Square Pack

VA -

ER (1 +A2) + (1 +AI) t?,/2j

(I+Az) 1

RVE shown in Fig. 5

Square Fiber, Rectangular Pack

1

Vf<_R(I+A) 2 if

R

"_'f--- (1 +A) 2
if

RVE shown in Fig. 5

User Defined RVE

R> 1.0

R< 1.0

Example of RVE representing random packing shown in Fig. 6
Required input shown in Appendix D.

Example: (select RVE idp=l)
_RVE
1

Note: R, R/,, RA, l/f, A = cper, A1 = cperl and A2 = cper2 are defined in sec. 4.3.16

Note: The images of the RVE's shown in Figs.5 and 6 were generated using the PAT-
RAN option (section 4.3.11) available in MAC.
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IDP = 1 IDP = 2

IDP = 3 IDP - 4

|

"--"!,,
|

I

I
IDP = 6 IDP = 9

i

Matrix I

Fiber

IDP = 11

Figure 5: RVE's Available in MAC
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IDP = 99

Figure 6: User defined RVE
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4.3.15 Fiber/Matrix Interface Option:

fiber�matrix interface comment

inter

inter •

1 - with interface

2 - no interface

Example: (select interface option)
_INTERFACE

2
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4.3.16 RVE Data:

Purpose: Enter required RVE data.

Without Interface: (inter=2)

• ForlDP=I,2,3
RVE comment

vf

• For IDP = 4
volume fraction comment

vf
xa distance comment

xa

• For IDP = 6
volume fraction comment

vf
side ratio comment

R

• For IDP = 9
volume fraction 1 comment

vfl
fiber radius 1 comment

radl
volume fraction 2 comment

vf2
fiber radius 2 comment

rad2
side ratio comment

R

• ForlDP=11
volume fraction 1 comment

vfl
._ fiber radius 1 comment

radl
side ratio comment

R

• ForlDP=99
RVE dimensions comment

nb, ng
h dimensions comment

hi, h2..... hng
i dimensions comment

I1, 12,. .... Inb
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With Interface: (inter=l)

• ForlDP=I,2,3
._ fiber volume ratio comment
vf

fiber radius 1 comment
radl

interface thickness comment

cper

• For IDP = 4

=_ Currently NOT Available

• For IDP = 6

,_ Currently NOT Available

• For IDP = 9
fiber I volume ratio comment

vfl
fiber radius 1 comment

radl
interface 1 thickness comment

cperl
fiber 2 volume ratio comment

vf2
-_ fiber radius 2 comment
rad2

interface 2 thickness comment

cper2
side ratio comment

R

• IDP = 11
fiber I volume ratio comment

vfl
fiber radius 1 comment

radl
side ratio comment

R
interface thickness comment

cper

• ForlDP=99
RVE dimensions comment

nb, ng
h dimensions comment

hi, h2..... hng
-_ I dimensions comment

I1, 12,. .... Inb

43



MAC:. M icrornechanics A nalysis Code

where:

vf, vfl, vf2 = the fiber volume ratios

rad, radl, rad2 = fiber radii

cper, cperl, cper2 = ratios of interface thickness to fiber radius

xa = length of the cross

R = X/Y which defines the ratio of distances between fiber within a =ply" and those

between a =ply" (see figure on following page)

Hybrid Composite RVE

Fiber #1

Fiber #2
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Cross Shaped Fiber Distance xa

xa

Fiber Spacing Ratio, R=X/Y

Y

X
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4.3.17 Plot Point Information:

Purpose: Specify the frequency at which data will be written to output files for both X-
Y data and PATRAN if applicable. This provides the user with the ability to control the
size of the output files since PATRAN files can become large, depending on the prob-
lem.

plot point frequency comment
npmax

Example: (print out every fifth data point)
_NPMAX
5
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4.3.18 Curve Data:

Purpose: Select plot variables for x and y axes and plot data filename

SDecifvin9 Curve Data For Macro (com Do_;ite! Quantities:

curve 1 comment- (curve 1)
x variable comment- (x variable)

maidx

y variable comment - (y variable)
maidy

filename comment n- (filename)
tname

continuation comment - (more)
more ?

maidx and maidy variable options:

1 - eli 7- Gll 13- e_l

i
2- e_ 8- _:_ 14- e22

3- e33 9- _33 15- e_3

4 - 712 10 - "¢12 16 - _2

5- 723 11 - "_23 17- 7i23

6 - 7z3 12 - _13 18 - "_3

19 - e_

th
20- e22

th
21 - e33

22 - Total Time

23 - Creep Time

24 - Temperature

tname :

--- = name of plot file

Note: The file(s) generated will be of the form tname_mac.data. If the user desires to
to use the same tname for files 2-5, a double quote, ", is entered for tname.
Those files then will have the form"

tname2_mac.data
tname3_mac.data
etc.

(see the example for more details)

more?:

y = generate another data file
n = finished selecting data files

_" Note: Currently a maximum of 5 curves maybe specified per problem
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EXAMPLE: @ CURVE 1
_X
1
._Y
7
-_ FILENAME
stress

MORE?

Y
CURVE 2

_X
22
._Y
13
-_ FILENAME
u

•_ MORE?

Y
-_ CURVE 3
@X
23
-_Y
13
-_ FILENAME

plot
•_ MORE?
13

file created: stress_mac.data

file created: stress2_mac.data

file created: plot_mac.data
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S.oecifyina Curve Data for Micro (subcell) Quantities:

micro option comment
micro

micro:

y = generate subcell data files
n = no subcell data requested

if micro is y (yes), then enter the following data lines:

number of subcells comment
nucell

curve 1 comment- (curve 1)
x variable comment - (x variable)

miidx

y variable comment - (y variable)
miidy

filename comment - (filename)
tname2

dummy keyword
more?

miidx and miidy:

i 19 25 - _-'1 - ell 7- (_11 13- Ell " (t)l_ 11

i 20 262- %2 8- 022 1 4- e22 " (_)22 " _F22

i 21 27
3- e33 9 - (;33 1 5 - E33 " (D33 " _IJ33

4- _t12 10 - 1:12 16 - "_2 22 - (_12 28 - _12

5 - 723 11 - "c23 17 - "//23 23 - (I)23 29 - _F23

6 - 713 12 - '_13 18 - _3 24 - _13 30 - _13

31 - Total Time

32 - Creep Time

33 - Temperature

The quantities (Z)and v# are the possible internal state variables (constitutive model

dependent).
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tname2:

--- = name of plot file

,="Note: The file(s) generated will be of the form tname2_mic.data. If the user desires to
to use the same tname2 for files 2-5, a double quote, ", is entered for tname2.
Those files then will have the form:

tname22_mic.data
tname23_mic.data
etc.

(see the example for more details)

nucell:
--- = subcell number

more ?:

y - to enter another subcell number
n = finished selecting subcells

EXAMPLE: -_ MICRO?

Y
•,t- NUCELL
1

CURVE 1
-_X
1
_Y

7
-_ FILENAME
cell

MORE?
n

file created: cell_mic.data
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4.3.19 Multiple Run Option:

Purpose: Specify if a new "case" or "problem" is to be run

._ case comment

ncase
problem comment

nprob

Example: -$NCASE
n

-_NPROB

n

,="Note: Here, a new "case" means to run the problem with the same load type and his-
but with a new material model, new material Constants, and/or RVE.

A new "problem" is similar to the above except that a new load type and history

may also be specified.

This option allows a sequence of runs to be made with different load types,
load histories, material models, material constants, and packing arrangements
all contained within a _ MAC.key file

Note: if ncase is y then the data for the next case must follow, for example,

I
I

NCASE?

Y

-_ NCASE?
n
-1(-NPROB?
n

first problem data

new case data

start at section 4.3.10

end of mac.key file

example of an
additional case
desired
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,=" Note: if ncase is n but nprob is y then the following format is used,

tliliiiiiiiiiiiiiii
NCASE?

n

•X(-NPROB?
Y

::::::::::::::::::::::::::::::::::::::::::

::::::::::::::::::::::::::::::::::::::::::::

i:;r>,:::i:_:_:::!;5_;_:_:_:_:::5::::::::¢::::::::::

-$ NCASE?
n
-_ NPROB?
n

first problem data

new _ data

start at section 4.3.4

end of mac, key file

example of an
additional problem
desired

Refer to Appendix B for a detailed mac.key file example.
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5.0 Conclusion/Future Modifications

A computationally efficient, user-friendly, comprehensive, micromechanics analysis
tool, MAC, has been presented that admits physically based viscoplastic deformation
and life models, can analyze multiphased materials of interest in advanced propulsion
systems, and can assist both the material scientist and structural analyst in developing,
designing and analyzing strategic materials. However, the development of this tool is far
from complete. A number of future enhancements that are planned and currently under-
way include:

1) Provide a convenient link for user definable constitutive material models.

2) Provide an implicit integration algorithm to improve computational efficiency.

3) The ability for each subcell to utilize a different material model.

4) The incorporation of damage evolution laws and failure criteria so as to provide
life estimates.

5) The incorporation of lamination theory to allow analysis of laminates.
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6.0 Appendix A

$_mDle mac.key File For A Mechanical Load Problem

The following example is used to explain the control blocks in more detail.

Problem Summary:

Load Type:

Load Component:

Load History:

Load Control:

Load History Data:

Micromechanics model:

Fiber Packing Arrangment:

Integration Algorithm:

Constituent Material Model:

Constituents:

Mechanical

22-direction (transverse to fiber)

Cyclic

Strain

= 8.333x10 "4,

emax = 0.015,

E min = O.

Atinitia I = 0.0000024

Double Periodicity

Hexagonal Pack at 35% fiber volume ratio

Predictor/Correcter

GVIPS

Fiber: SCS-6

Matrix: TIMETAL21 S
Interface: fictitious weak interface for TIMETAL21 S
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I
*FOR MECHANICAL LOAD RUN I

*IRUN INTERACTIVE=I BATCH=2 ]
I2

*NPLVL I-1

2*NSEL ]

*LOP
2

*IOPT5
1

*NPTW
2
*TIMES

0.,18.
*LOAD

0.,0.015

650.

*MODID1 I

*NTF
2
*ISTP
0.0OOOO24
*ERRTOL
0.1E-2

n*PAI'RAN I

*NCMD ]4

*NMT
3

Header Line

Batch Control Mode

Print Level

Load Type: Mechanical

Load component in
22-direction

Strain Control

2 Data points

Time Data

Load Data

Reference Temperature

Double Periodicity

Predictor/Corrector

Initial Step = 0.0000024

Error Tolerance

No PATRAN Output

GVIPS Model

3 materials
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"MAI 1
B
*IDB

Y

*MAT2

A
*IDB

Y

*MAT3
C
*IDB
n
*ELASTIC

11700,11700.,0.365,0.365,4287.5,1., 1.
*VISCOPLASTIC

0.8E-8,0.1,0.1E-5,0.,0.85E-3,0.05,1.,1.,1.,3.3,1.8,1.35,1.,0.01

*IDP
2

*INTERFACE
1

*VF

0.35
*RAD
0.07
*CPER
0.1

*FIBID
1
*INTID
3
*MATID
2

*NPMAX
5

*CURVE 1
*X
2
*y
8

Material 1:SCS-6

read from database

Material 2: TIMETAL21S

read from database

Marerlal 3: Weak Interface

Read constants from key file

Elastic constants

Viscoplastlc constants

RVE: Hexagonal Pack

Include fiber/matrix
Interface

Volume Fraction

Fiber Radius

Interface
Thickness/Fiber Radius

Fiber Material id. = 1

Interface Material id. = 3

Matrix Material id. = 2

Print requested data every
5 Increments

Curve I data:

E22

(;22
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*FILENAME

SEtranwhex35

*MORE?

rl

*MICRO?
il

*NCASE?

n

*NPROB?

n

Filename for Curve I

No more macro quantities

No micro quantities

No new cases

No new problems

The following figure was obtained from the x-y plot data file produced by the present

example.

O3

40.0 B

35.0

30.0

25.0

20.0

15.0

10.0

5.0

0.0
0.0

, I , I , I , I . ; . I ! I

0.2 0.4 0.6 0.8 ! .0 1.2 1.4 1.6

Strain (%)

Note: It is recommended that a new user construct a mac.key file using the data given

in this appendix and then check to see if the same result plot is obtained.
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7.0 Appendix B

SamPle of A Series of Runs Contained Within One mac.key File

*FOR MECHANICAL LOAD RUN
*JRUN INTERACTIVE=I BATCH=2
2
*NPLVL
-1
*NSEL
2
*LOP
2
*IOPT5
1
*NFrw
2
*TIMES

0.,12.0
*LOAD
0.,0.01
*TREF
873.
*MODID
1
*NTF
2
*ISTP
0.0048
*ERRTOL
0.1E-2
*PATRAN

n

*NCMD
4
*NMT
3
*MAT1
B
*IDB

Y
*MAT2
A
*IDB

Y
*MAT3
C
*IDB

n

*ELASTIC

1170.,1170,0.365,0.365,4285.7,1.0,1.0
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*VISCOPLASTIC

0.8D-7,0.1,0.1D-5,0.,0.85E-4,0.05,1.,1.,1.,3.3,1.8,1.35,1.,0.01
*IDP

1

*INTERFACE
1

*V1e

0.35

*RAD1

0.07

*CPER
0.1

*FIBID

1
*INTID

3

*MATID

2

*NPMAX

1

*CURVE 1

*X

2
*y

8

*FILENAME

test

*MORE?

n

*MICRO?

II

y*NCASE? I

1

*NTF
2

*ISTP
0.0048

*ERRTOL

0.1E-2

*PATRAN

n

*NCMD
4

*NMT

3

*MATI

B

*IDB

Y
*MAT2

A

Select new case option

Beginning of new case data

Note that it begins at
section 4.3.10
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*IDB

Y
*MAT3
C
*IDB

n
*ELASTIC

11700,11700.,0.365,0.365,4285.7,1.0,1.0
*VISCOPLASTIC

0.8D-7,1.,0.1D-5,0.,0.85E-4,0.05,1.,1.,1.,3.3,1.8,1.35,1.,0.01
*IDP
1
*INTERFACE
1
*VF
0.35

*RAD
0.07

*CPER

0.I

*FIBID

1

*INTID

3
*MATID

2

*NPMAX

I

*CURVE I
*X

2

*y

8

*FILENAME

teat2
*MORE?

n
*MICRO?

n
*NCASE?

n

*NPROB?

Y

*NSEL _11111HHHIHIIIIH,
2
*LOP
2
*IOPT5
1
*NFrw
2
*TIMES

0.,12.0

Skip new case option

Select new problem option

Beginning of new Droblem
data
Note that it begins at
section 4.3.4
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*LOAD

0.,0.01
*TREF
873.
*MODID
1
*NTF
2
*ISTP
0.0024
*ERRTOL
0.10E-2
*PATRAN

11

*NCMD
4
*NMT
3
*MAT1
B
*IDB

Y
*MAT2
A
*IDB

Y
*MAT3
A
*IDB
B

*ELASTIC
1170., 1170. ,0.365,0.365,4285.7,1.0,1.0
*VISCOPLASTIC
0.8D-7,0.1,0.1D-5,0.,0.f5E-4,0.05,1.,1 .,1 .,3.3,1.8,1.35,1.,0.01
*IDP
1
*INTERFACE
1
*VF
0.35
*RAD
0.07
*CPER
0.1
*FIBID
I
*INTID
3
*MATID
2
*NPMAX

I
*CURVE 1
*X
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2
*y
8
*FILENAME
test3
*MORE?
II

*MICRO?
n

*NCASE?
n

*NPROB?
II

End of mac.key file
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8.0 Appendix C

Sample mac.key File For A Thermal Load Prol21_m

The following example is used to explain the control blocks in more detail.

Problem Summ_lry:

Load Type:

Load History Data:

Micromechanics model:

Fiber Packing Arrangment:

Integration Algorithm:

Constituent Material Model:

Constituents:

Thermal

f = o.o1,

Tmax = 371.1,

Tmin = 21.1

Atinitia I = 17.505

Double Periodicity

Square Pack at 35% fiber volume ratio

Predictor/Correcter

Bodner-Partom

Fiber: Graphite
Matrix: Aluminum

Note: This problem is taken from reference 1., pg.238
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"bUK MI_(_I-IANI_P_LLUAL) KUI_

*]RUN INTERACTIVE=I BATCH=2

2

*NPLVL
0

*NSEL
I

*NPTT
3
*TIMES
0.35010.,70020.
*TEMPS

371.1,21.1,371.1

*TREF
371.1

*MODID
1

*NTF
2
*ISTPT
17.505
*ERKI'OL
10.E-2

n*PATRAN I

*NCMD1 ]

2

*MAT1
A
*IDB

Y

*MAT2
B
*IDB

Y

64

Number of Data Points

Time Data Points

Temperature Points

Predictor/Corrector

Initial step size

Error Tolerance
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*IDP
1

2*INTERFACE ]

• I0.3

*FIBID
1
*MATID
2

*NPMAX
5

*CURVE 1
*X
24
.y
1

*FILENAME
thermal

*MOP,E?
n

*MICRO?

n

*NCASE?

n

*NPROB?
n
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The following figure was obtained from the x-y plot data file produced by the present
example.

xlO 2
-0.30

-0.26

-0.22

-0.18

-0.14

"_-0.10

-0.06

-0.02

0.02

0.06

0.10

I I ---- Forward Euler

o Predic_r/Correc_r

: , I , I , I , I , I , i I ,
0 50 lO0 150 200 250 300 350

Temperature

I
400

,="Note: It is recommended that a new user construct a mac.key file using the data given

in this appendix and then check to see if the same result plot is obtained.
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9.0 Appendix D

Sample mac.key File For Random Composite

*FOR MECHANICAL LOAD RUN

*_P-,UN INTERACTIVE=I BATCH=2

2

*NPLVL

-I
*NSEL

2

*LOP

I

*IOPT5

2

*NVIW

2
*TIMES

0.,0.04
*LOAD

0.,4.0
*I_F_.F

873.

*MODID

1

*NTF
1

*ISTP

0.004

*PATRAN

n
*NCMD

3
*NMT

2

*MAT1

B

*IDB

Y
*MAT2

D

*IDB

Y
*IDP

99

*INTERFACE

2

*NB NG

14,14
*XH

1.,

1.,

1.,

1.,
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1°_

].,

].,

].,

].,

].,

].,

].,

]._

]._

*XL
1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.
*MATNUM
1,2,2,2,2,2,1,1,2,2,1,1,2,1
12,1,1,23,1,1332,23,1
22,1,1,222,2,22,1,1,22
2,2,2,2,2,2,2,1,1,2,1,1,2,2
2,2,1,1,222,1,122,222
1_,I, I _.,2_.,2,2,2,1, I_.,i
1,2,2,2,2,1,1,2,2.2,1,1,2,1
22,2,2,2,1,1,2,22,2,2,22
2,1,I,2,2,2,2,2,1,I,2,1,1,2
2,1,I,2,1,1,2,2,1,1,2,1,I,2
2,2,2,2,1,1,1,1,2,22,222
1,1,2,2,2,2,1,I,2,2,2, I,I,2
1,1,2,2,2,2,2,2,2,2,2,1,1,2
2,22,2,2,2,2,2,2,2,1,1,2,2
*NPMAX
1
*CURVE I
*X
1

,y
7
*FILENAME

tc_t

*MORE?

n

*MICRO?
II

*NCASE?

n

*NPROB?

II
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